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Abstract

We report on the development and applications of an interface-capturing method aimed at computing three-
dimensional incompressible two-phase flows involving high density and viscosity ratios, together with capillary effects.
The numerical approach borrows some features to the Volume of Fluid method (since it is essentially based on the trans-
port of the local volume fraction of the liquid) as well as to the Level Set technique (as no explicit reconstruction of the
interface is carried out). The transport of the volume fraction is achieved by using a flux-limiting Zalesak scheme and the
fronts are prevented from spreading in time by a specific strategy in which the velocity at nodes crossed by the interface is
modified to keep the thickness of the transition region constant. As shown on several test cases, this algorithm allows the
interface to deform properly while maintaining the numerical thickness of the transition region within three computational
cells whatever the structure of the local flow field. The full set of governing equations is then used to investigate some
fundamental aspects of bubble dynamics. More precisely we focus on the evolution of shape and rise velocity of a single
bubble over a wide range of physical parameters and on head-on and side-by-side interactions between two rising bubbles.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The direct computation of incompressible two-phase flows has been an intense field of investigation over
the last 15 years, as such flows are involved in many aspects of basic fluid mechanics as well as in engineering
and environmental problems. One of the major technical issues in this area is to deal with changes in interface
shape and topology. Numerical methods where interfaces freely evolve on a fixed grid have proved efficient for
treating complex phenomena such as sloshing, splashing, breakup or coalescence. Several different techniques
belonging to this wide family have been elaborated since the pioneering work of Harlow and Welch (1965).
They may be divided within two main groups, depending on the way the interfaces are described.
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One group, usually referred to as ‘‘Lagrangian techniques’’, makes use of markers to follow the interfaces.
Front-Tracking methods (Unverdi and Tryggvason, 1992; De Sousa et al., 2004), and Marker methods (Pop-
inet and Zaleski, 1999) belong to this class and introduce a secondary moving grid whose aim is to provide the
interface location and curvature with a high accuracy. Particle-in-Cell methods (Harlow and Welch, 1965;
Enright et al., 2002) that fill the domain near the interface with markers moving with the flow also belong
to this group. These techniques become rather expensive as the number of markers increases. They may also
encounter practical difficulties in managing the addition or deletion of markers as the interface is stretched or
compressed by the flow (Unverdi and Tryggvason, 1992). The treatment of topological changes also requires
special care. Recent developments concerning Front-Tracking methods (Juric and Tryggvason, 1998; Torres
and Brackbill, 2000; Shin and Juric, 2002) improve this treatment and allow interfaces to merge or breakup
quite naturally. However, these techniques remain quite difficult to implement for a general ‘‘blind’’ use.

The second group of methods is referred to as ‘‘Eulerian techniques’’. These techniques make use of a scalar
function to define the location of the interface. This is especially the case of the Level Set method (Osher and
Sethian, 1988; Sussman et al., 1994; Sethian, 1999) which is based on a smooth distance function whose zero
value corresponds to the location of the interface. Level Set techniques classically suffer from poor mass
conservation (Sussman et al., 1998). A way to improve this aspect is to locally modify the flow field within
the interface region to keep the slope of the Level Set function constant, as suggested by Adalsteinsson and
Sethian (1999). Other possibilities may consist in coupling the Level Set approach with a conservative method
(Sussman and Puckett, 2000; Enright et al., 2002). Volume of Fluid methods (Hirt and Nichols, 1981; Youngs,
1982; Lafaurie et al., 1994) also belong to the group of Eulerian techniques. They transport the local volume
fraction of one of the fluids, a property varying sharply from 0 to 1 across the interfacial region, to update the
position of the interface. However, unlike the Level Set approach, they usually involve a step of effective
interface reconstruction. This step is based on the local volume fraction and the orientation of its gradient.
Interfaces are then generally reconstructed using a piecewise linear interpolation (Scardovelli and Zaleski,
1999). The main strength of the Volume of Fluid method is that it conserves mass exactly, as it works directly
with the volume fraction. On the other hand, the main drawback of this method is the complexity of the recon-
struction procedure in three dimensions.

The goal of the present paper is to describe some technical aspects and potentialities of a method which lies
midway between the Volume of Fluid approach (as the transported quantity characterizing the two-phase
nature of the flow is the volume fraction of one of the fluids) and the Level Set method (as no explicit recon-
struction of the interface is involved). The development of this method was motivated by the well-known lim-
itations of usual front-capturing techniques which, in the absence of an explicit interface reconstruction
procedure, suffer unavoidably from spreading of fronts as the computation proceeds. Several numerical
schemes aimed at overcoming this problem were proposed in the recent literature (Thuburn, 1996; Ubbink
and Issa, 1999; Dendy et al., 2002). However, up to our knowledge, their capabilities have mostly been proven
on simple transport tests rather than on real flow situations. Here we explore a simple alternative, described in
Section 3, which consists in an improvement of existing techniques rather than in a radically new numerical
scheme. This improved technique was developed to obtain a cheap and versatile tool for computing general
three-dimensional two- and three-phase flows involving high density and viscosity contrasts, together with
capillary effects. In Section 4 we quantify the performances of this technique on pure transport tests as well
as on some basic situations governed by the full two-phase Navier–Stokes equations, such as bubble shape
oscillations. Finally, we illustrate the potentialities of method in Section 5 by considering several subtle aspects
of bubble dynamics.

2. The Navier–Stokes equations and their numerical treatment

We assume the two fluids to be Newtonian and incompressible, with uniform surface tension and no phase
change. The evolution of the two-phase flow is then classically described using the one-fluid formulation of the
Navier–Stokes equations, namely
oV

ot
þ V � rV ¼ � 1

q
rP þ g þ 1

q
r � ½lðrVþtrVÞ� � r

q
ðr � nÞndI; r � V ¼ 0 ð1Þ
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where V, P, q and l are the local velocity, pressure, density and dynamic viscosity in the flow, respectively, g
denotes gravity and r is the surface tension. The surface delta function dI is zero outside the interface, the unit
normal of which is denoted by n. The local volume fraction of fluid 1 obeys
oC
ot
þ V � rC ¼ 0 ð2Þ
This volume fraction equals one (resp. zero) in cells filled with fluid 1 (resp. 2) and takes intermediate values in
cells belonging to the transition region. The local density and dynamic viscosity are evaluated using a linear
interpolation, namely
q ¼ Cq1 þ ð1� CÞq2 ð3aÞ
l ¼ Cl1 þ ð1� CÞl2 ð3bÞ
Eq. (3a) is exact, as it may be obtained from a mass balance over a cell crossed by the interface. In contrast,
Eq. (3b) is ad hoc and may lead to some physical inconsistencies, especially when an interface experiences a
strong shear. A general model of the viscous stress tensor is derived and discussed in a forthcoming paper.
Nevertheless (3b) will be used throughout the present study. The capillary force is transformed into a volume
force using the Continuum Surface Force model proposed in Brackbill et al. (1992). Hence we write
r
q
ðr � nÞndI ¼

r
q
r � rC

krCk

� �
rC ð4Þ
The Navier–Stokes equations (1) and (2) are solved using the JADIM code developed in our group. Details
on the spatial discretization and time-advancement algorithm used in this code for constant density situations
may be found in several previous publications, especially Magnaudet et al. (1995), Calmet and Magnaudet
(1997) and Legendre and Magnaudet (1998). Briefly, the momentum equations are discretized on a staggered
orthogonal grid using a finite volume approach. The spatial discretization is performed using second-order
centered differences. Time-advancement is achieved through a third-order Runge–Kutta algorithm for advec-
tive and source terms and a Crank–Nicolson algorithm for viscous stresses. Incompressibility is satisfied at the
end of each time step through a projection method. The overall algorithm is second-order accurate in both
time and space.

The main changes introduced in this procedure by the two-phase nature of the flows considered here are
related to the variable density and viscosity and to the capillary force. Basically we start the time-advancement
algorithm by solving (2), prior to solving the momentum equation. Hence, starting from Cn(x) and Vn(x) at
time nDt, we first obtain the solution Cn+1(x) corresponding to time (n + 1)Dt as discussed in Section 3 below,
and use it to evaluate the density qn+1(x) and the viscosity ln+1(x) through (3). Then we define the second-
order approximations of q and l at time (n + 1/2)Dt as qn+1/2 = (qn + qn+1)/2, ln+1/2 = (ln + ln+1)/2 and
use them throughout the time step [nDt, (n + 1)Dt] to solve (1). Note that the volume fraction is defined at
pressure nodes, so that linear interpolations are used to obtain the density and viscosity on velocity nodes.
Finally the variable density projection method by which the final velocity field un+1 is made divergence-free
requires the solution of a pseudo-Poisson equation of the form $ Æ ($ //q) = $ Æ u* for the pressure increment
/, u* being the intermediate velocity field. The corresponding linear system is solved by a Jacobi precondi-
tioned conjugate gradient technique. The JCG routine of the ITPACK Library is used for this purpose
(a direct Cholesky method is also used in two-dimensional cases).

The capillary term (4) is evaluated by approximating C at time (n + 1/2)Dt as Cn+1/2 = (Cn + Cn+1)/2. To
evaluate the volume integral involved in the right-hand side of (4) over a computational cell bounded by a sur-
face C with a unit normal N, we rewrite this term in the form r

R
C N � ðrC=krCkÞdC

� �
rC=q, whererC=q is a

volume average of $C/q over the cell, all contributions being evaluated at velocity nodes using centered dif-
ferences and second-order interpolations. As is well known, the sharp variations of C throughout the transition
region tend to generate spurious peaks in the curvature and lead to a poor evaluation of the capillary force. To
avoid such artifacts, the capillary force is evaluated using a smoothed distribution bC of the volume fraction
obtained from C through several successive applications of a weighted average over the surrounding grid
points. In two dimensions, the elementary smoothing procedure around a given grid point (i, j) takes the formbCi;j ¼ 3=4Ci;j þ ðCiþ1;j þ Ci�1;j þ Ci;jþ1 þ Ci;j�1Þ=16. Detailed tests concerning the influence of this smoothing
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procedure may be found in Bonometti (2005). Examples of the accuracy with which this method allows the
shape of deforming bubbles to be predicted were given by Bonometti and Magnaudet (2006).

3. Transporting the volume fraction

3.1. The general algorithm

We basically solve Eq. (2) by using a modified version of the transport scheme proposed by Zalesak (1979).
As is well known, this scheme belongs to the family of Flux Corrected Transport schemes (Boris and Book,
1973) initially derived for the treatment of shocks. Rudman (1997) and Benkenida (1999) among others
noticed that the original multidimensional Zalesak scheme has a strong tendency to distort the fronts in
several types of simple flows. To avoid this distortion, we split the transport equation (2) into three successive
one-dimensional steps written in nonconservative form. For instance if the velocity components at time nDt

are Un, Vn, Wn along directions x, y and z, respectively, we successively advance the volume fraction from
its value Cn at time nDt to its value Cn+1 at time (n + 1)Dt through the explicit algorithm
C� � Cn

Dt
þ U n oCn

ox
¼ 0 ð5aÞ

C�� � C�

Dt
þ V n oC�

oy
¼ 0 ð5bÞ

Cnþ1 � C��

Dt
þ W n oC��

oz
¼ 0 ð5cÞ
where C* and C** denote intermediate values of C. One-dimensional fluxes are evaluated in nonconservative
form because the strain rates oU/ox, oV/oy and oW/oz may produce values of C*, C** or Cn+1 less than 0 or
greater than 1 if the conservative form is used (Rudman, 1998). The diffusive/antidiffusive treatment of the
spatial flux developed by Zalesak is applied during each of the above one-dimensional steps. This flux-limiting
procedure which combines the use of a low-order and a high-order expression of the flux to guarantee the pos-
itivity and monotonicity of C is second-order accurate. This algorithm is not detailed here, as it is extensively
described in the original reference (Zalesak, 1979) as well as in several textbooks. Here we just mention that we
use first- and eight-order approximations for the low- and high-order fluxes, respectively. The sequence along
which the three spatial directions are treated is modified at every time step, so that no preferential direction is
artificially created. Adding the three substeps (5a)–(5c) yields
Cnþ1 � Cn

Dt
þ U n oCn

ox
þ V n oC�

oy
þ W n oC��

oz
¼ 0 ð6Þ
Eq. (6) clearly indicates that, in contrast to the original multidimensional scheme in which C* = C** = Cn, the
splitting procedure yields an overall transport scheme which is not conservative anymore. Hence, a correction
procedure has to be introduced to avoid small mass errors to accumulate and result in inaccurate long-time
solutions. Controlling mass errors is a well-known issue encountered in both Lagrangian and Eulerian tech-
niques, such as Boundary Elements (Zhou and Pozrikidis, 1993) and Front Tracking methods (Bunner and
Tryggvason, 2002) whose transport algorithms are not explicitly conservative, but also in Level Set methods
that use a redistanciation step (Sussman et al., 1998), or even in Volume of Fluid methods in which interface
reconstruction is split into one-dimensional steps (Renardy et al., 2001).

The strategy adopted here for controlling mass errors is based on a modification of the local volume frac-
tion C that keeps the global mass of each fluid constant. A similar constraint was applied by Chang et al.
(1996), Sussman and Uto (1998) and Spelt (2005) to improve the overall mass conservation of Level Set meth-
ods. Let Dm(t) be the relative error of mass (or volume) in fluid 1 at time t in the whole computational domain
#. We have
DmðtÞ ¼
R
#
ðCðx; tÞ � Cðx; t ¼ 0ÞÞd#R

#
Cðx; t ¼ 0Þd# ð7Þ



Fig. 1. Volume fraction modification to control mass errors. (a) jDmj 6 Dmmax; (b) Dm < �Dmmax; (c) Dm > Dmmax. (—) c = 1; (- - - -)
c = 2; (–Æ–Æ–Æ–Æ) c = 10; (. . .. . .) c = 103.
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The local volume fraction C at any point x is replaced by a corrected volume fraction eCðx; tÞ defined as
eCðx; tÞ ¼ minðcCðx; tÞ; 1Þ if DmðtÞ < �Dmmax

Cðx; tÞ if jDmðtÞj 6 Dmmax

1�min½cð1� Cðx; tÞÞ; 1� if DmðtÞ > Dmmax

8><
>: ð8Þ
where c is a real parameter such that c P 1. This parameter is computed iteratively until the criterion
jDm(t)j 6 Dmmax is satisfied. Based on extensive tests, we determined that the value Dmmax = 10�3 is adequate,
as in all cases we found the corresponding residual mass error to have no effect on the long-time dynamics of the
flow. It is worth noting that Bunner and Tryggvason (2002) also found that a relative mass error of 10�3 did not
induce any change in their results. The computational time required to evaluate eC is less than 1% of the overall
CPU time. In practice, as the overall mass error grows slowly, C is modified only every 50 time steps approx-
imately, and c converges in less than 10 iterations. Modifications of the volume fraction induced by the correc-
tion strategy (8) are illustrated in Fig. 1 where a one-dimensional distribution of eC is shown for different values
of c. This figure makes it clear that the region where 0 < eC < 1 is included within the transition region where
the initial volume fraction C is such that 0 < C < 1. In addition (8) tends to stiffen the fronts, which is a positive
feature. The most noticeable limitation of the above correction strategy is that it is global, since the mass error
(7) is evaluated over the whole computational domain (as in Chang et al., 1996; Sussman and Uto, 1998; Spelt,
2005) rather than locally. Hence for instance in a dispersed flow, (8) may not strictly preserve the mass of each
drop individually. Nevertheless, provided the logical tests required to identify the cells corresponding to each
drop are performed, it is possible to define the equivalent of the relative mass error (7) for each of these
subdomains. Therefore, with a moderate number of drops, the above method can be generalized so as to con-
serve the mass of the various subdomains of fluid 1, as in Bunner and Tryggvason (2002). Yet this correction
strategy remains a first-order remedy, and further work needs to be done to obtain a technique capable of con-
trolling mass errors in a local manner which deals explicitly with the specific geometry of the interface.

3.2. Preserving the stiffness of the fronts

In addition to the transport step, Volume of Fluid methods generally comprise an interface reconstruction
step whose essential role is to prevent the fronts from spreading as time proceeds. As we did not wish to intro-
duce such a reconstruction step in our method to keep it as cheap and flexible as possible, we were faced with
this spreading problem. Level Set techniques do not escape the problem either, even though they define and
maintain a zero-thickness interface through the zero isovalue of the Level Set function. This is because the
Level Set function has to remain a signed distance throughout the computation and does not do so naturally,
as it tends to spread in some regions of the flow and to bunch up in others. Different redistanciation techniques
have been proposed to recover the required properties of the Level Set function (Sethian, 1999; Sussman et al.,
1998; Adalsteinsson and Sethian, 1999).



Fig. 2. Transport of the volume fraction using Zalesak scheme (iso-C = 0.01, 0.5 and 0.99, 100 · 100 grid). (a) Translation U = V = 1; (b)
rotation U = �y, V = x.
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The transport scheme described in Section 3.1 preserves the stiffness of the fronts in presence of a transla-
tion, whatever its orientation relative to the grid, as shown in Fig. 2. Clearly the front thickness displayed in
Fig. 2(a) (defined as the distance separating the iso-C lines corresponding to C = 0.99 and C = 0.01, respec-
Fig. 3. Transport of the volume fraction in a pure straining flow U = ax, V = �ay (here a = 1), using Zalesak scheme (iso-C = 0.01, 0.5
and 0.99, 100 · 100 grid).
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tively) is limited to three grid cells at all time. The same conclusion holds in presence of a solid body rotation,
as shown in Fig. 2(b) (note however that the corners suffer from some erosion).

In contrast, Fig. 3 is very revealing of situations in which the front may spread dramatically. The compo-
nents of the corresponding velocity field V are U = ax, V = �ay (a > 0), with x = y = 0 at the lower left
corner. The eigenvalues of $V are thus a and �a and the corresponding eigenvectors ka and k�a are the unit
vectors e1 and e2 parallel to the grid lines y = const. and x = const., respectively. The rectangle first undergoes
a compression along the y-axis (Fig. 3(a)) and transforms into a square when it comes close to the hyperbolic
point x = y = 0 (Fig. 3(b)). This stage mostly maintains the stiffness of the fronts. Then the square moves
apart from the hyperbolic point and starts to undergo an elongation along the x-axis (Fig. 3(c)), eventually
returning to its initial shape with the horizontal and vertical axes interchanged (Fig. 3(d)). While the final
thickness of the fronts is still reasonable on the upper, lower and right sides of the rectangle, it has increased
dramatically on the left side. This situation tells us several things. First, we note that the fronts corresponding
to the horizontal sides of the rectangle always remain stiff. These fronts are all orthogonal to k�a (i.e. they are
compressed), but they are either perpendicular to the local velocity V (as in Fig. 3(a)) or parallel to it (as in
Fig. 3(d)). This allows us to conclude that compressed fronts remain stiff, irrespective of the angle they make
with the fluid velocity. Second, we see that in Fig. 3(a) and (b) the fronts corresponding to the vertical sides of
the rectangle do not spread, whereas in Fig. 3(c) and (d), the left side of the rectangle does. These fronts are all
orthogonal to ka. However in the first two cases the local velocity V is mostly parallel to the front, whereas it is
mostly orthogonal to it in the last two ones. Hence it turns out that the fronts spread when they are orthogonal
to both V and ka. Finally, it is obvious from Fig. 3(d) that the spreading is much larger on the left side than on
the right one, which emphasizes the importance of the characteristic stretching length d = (U2 + V2)1/2/a; the
smaller d, the larger the spreading. To summarize, Fig. 3 tells us that the most dangerous situation regarding
the spreading of fronts is encountered in regions where the front is crossed by a weak flow with a large elon-
gation rate.

Our strategy to deal with the spreading problem borrows some aspects from recent improvements of Level
Set methods (Adalsteinsson and Sethian, 1999; Gomes and Faugeras, 2000) in which the authors tackled the
issue of maintaining the gradient of the Level Set function unity by modifying locally the velocity field near the
interface. Here, we basically seek to remove the stretching within the transition region by making the velocity
field locally constant across it, as illustrated in Fig. 4. To this end, we consider successively each of the
one-dimensional steps of (5) during which C is advected along the ith direction of the grid (i = 1,3). Let then
Xi be the transition region corresponding to points such that 0 < C < 1 at the beginning of this step. Our
method consists in advecting the front by a locally modified velocity field eV evaluated from V as follows:
Fig. 4.
with a
eV iðx; tÞ ¼
V iðx; tÞ if x 62 Xi

V iðx0; tÞ if x 2 Xi

�
ð9Þ
where x0 lies on the iso-C line C = 0.5 and is the point closest to x that lies either on the ith grid line or on
the streamline passing through x, depending on which of them makes the smallest angle with the local
Schematic of the strategy followed to preserve the stiffness of the fronts. (a) Transport with the flow velocity V and (b) transport
locally modified velocity eV . Note that eV equals V(C = 0.5).
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volume fraction gradient. As mentioned above, this procedure is repeated independently during each of the
one-dimensional steps of (5). Obviously the mass of each fluid is not conserved during the application of (9).
However the corresponding error may be cumulated with that resulting from the one-dimensional splitting
of the transport algorithm and the whole mass error is treated through the procedure described in Section
3.1. We found that the computational time spent to evaluate eV using (9) is less than 2% of the total CPU
time in all the computations we performed so far. Obviously the modified velocity field eV is only used in the
computation of C, while the real velocity field V remains the only one involved in the Navier–Stokes equa-
tions (1).

Let us now detail the above choices concerning the way x0 is selected.

3.2.1. The threshold condition C(x0) = 0.5

Since the thickness of the transition region may not be less than three computational cells, the velocity is in
general nonuniform across it and evolves smoothly from one value on the side of Xi corresponding to C! 1,
to another value on the side corresponding to C! 0. The true value of the interface velocity, which does not
depend on the discretization, lies between these two extreme values. Fig. 5 shows how the algorithm described
in Section 3.1 transports a step of C in a stretching flow on different grids. It is clear from this figure that the
location of the value C = 0.5 is independent of the grid and coincides with the theoretical location of the jump,
while the location of all other values of C is not. This allows us to conclude that the physical value of the inter-
face velocity is that corresponding to C = 0.5 and leads us to select x0 such that C(x0) = 0.5.

3.2.2. Selecting the direction of x–x0

For any point x of the transition region Xi, the direction of x–x0 may be chosen among several candidates.
As the above discussion emphasizes the role of the orientation of the front (defined by $C) with respect to the
local velocity V and to the eigenvectors of $V, it seems natural to use the direction provided by one of these
quantities to define x–x0. However the eigenvectors of $V have an imaginary part when the flow is locally
elliptic rather than hyperbolic, so that they cannot be used easily in a general method which has to deal with
all types of flows. On the other hand, the iso-coordinates xi = const. of the grid also play a particular role in
the one-dimensional splitting (5), as they are used to advance the volume fraction in time. Consequently, as
shown on a particular example in Fig. 6, we are left with three simple possibilities.

The most obvious choice is to align x–x0 with the direction of the volume fraction gradient. However,
errors in the evaluation of rC mostly occur in regions of high curvature and may lead to errors in the deter-
mination of x0. Several tests revealed that this choice does not allow the shape of highly curved regions to be
properly maintained, which led us to conclude that selecting the rC-direction is not appropriate (see
Fig. 10(c) for an illustration of how this transport strategy behaves in a real situation). Forcing x–x0 to
Fig. 5. Transport of a step of C by the velocity field U(x) = exp[�5exp(�25x2)]. (–Æ–Æ–Æ–Æ) Initial condition; (—) theoretical solution at
time t = 3.5. Results obtained on different grids with the initial scheme ð eV ¼ VÞ at time t = 3.5: (—) coarse grid (Dx = 1/100); (- - - - -)
medium grid (Dx = 1/200); (. . .. . .) fine grid (Dx = 1/400).



Fig. 6. The candidate directions for the determination of x0. (a) A circular interface in a stretching flow. (b) directions parallel to rC;
(c) streamlines; (d) grid lines. The grey zone represents the transition region X.
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be parallel everywhere to the direction of the local streamline is another option which provides good results
in regions where the flow crosses the front. However it cannot be used alone since the problem of finding
C(x0) = 0.5 such that x–x0 is parallel to V(x) has no solution in regions where the front is parallel to V.
Moreover, near such regions, the solutions x0 and x00 corresponding to two neighboring points x and x 0

may be widely separated, leading to large differences between eV ðx0Þ and eV ðx00Þ. Rather than improving
the global result, this undesirable behavior may dramatically worsen it in some cases. Another possibility
consists in choosing x0 such that x–x0 is parallel to the ith grid direction along which the volume fraction
is advected during the current one-dimensional step of (5). This choice is obviously consistent with the trans-
port algorithm. Based on extensive tests, it turned out to be the most efficient in most situations, as it offers
two or three (depending on whether the computation is 2D or 3D) different directions to find x0. However in
regions where neither the front, nor the velocity is locally parallel to one of the grid lines, this strategy may
become inefficient (see e.g. Fig. 10(b)).

The above considerations led us to adopt a mixed strategy which keeps the best of the above two possibil-
ities. For this purpose, at any point x of Xi, we evaluate the dot product ai = ($C/k$Ck) Æ ei, where ei is the
unit vector corresponding to the ith direction. Similarly we evaluate the dot product bi = ($C/k$Ck) Æ
(V/kVk), where V is the local velocity. Then, depending on which of jaij and jbij is the smallest, we seek x0

either on the grid line issuing from x and parallel to ei or on the streamline issuing from x. Note that in certain
particular situations, especially when the streamline and the ith grid line are both parallel to the front, it may
happen that during a given one-dimensional step none of the above two families of lines crosses the curve
C = 0.5. In such cases we simply maintain eV i ¼ V i.

In practice the procedure used to find x0 comprises several steps. It first consists in evaluating ai(x) and bi(x)
and checking whether C(x) is smaller or larger than 0.5. Then we examine the values of C at the two grid
points which, among the closest neighbors of x, are located either on the same ith grid line (if jaijP jbij)



Fig. 7. An example of the selection process of eV . The grey area represents the transition region Xi, the curves symbolize the streamlines.
At point x we have ja1j < jbj and ja2j > jbj. Consequently, if i = 1, x0 is seeked along the streamline, resulting in eU ðxÞ ¼ Uðx0Þ. In contrast,
if i = 2, x0 is seeked along the grid line x = const. resulting in eV ðxÞ ¼ V ðx0Þ.
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or are the closest to the straight line parallel to V(x) issuing from x (if jbij > jaij). Let us suppose that we found
C(x) < 0.5. Then, if none of the above two values of C is larger than C(x), we simply keep eV iðxÞ ¼ V iðxÞ. If at
least one of them exceeds C(x), we pin the corresponding point x1 (or the point corresponding to the largest of
the two values if they are both larger than C(x)) and restart the procedure with x1 in place of x. The procedure
is repeated n times until we find C(xn) > 0.5. Using a linear interpolation between xn�1 and xn we then deter-
mine the approximate location x0 such that C(x0) = 0.5 and by another linear interpolation evaluateeV iðxÞ ¼ V iðx0Þ. The procedure follows symmetrically in the case C(x) > 0.5. An illustration of the way the
above algorithm works is provided in Fig. 7.
3.3. Summary

To sum up, the transport algorithm comprises the following steps:

• along each spatial direction (the order in which they are treated is interchanged at every time step):
(a) detect the transition region Xi and remove the strain rate within it by replacing Vi by eV i as described

above,
(b) advance C by solving the one-dimensional transport equation (5) along the ith direction using eV i.

Fluxes eV ioC=oxi (no summation on i) are evaluated using Zalesak scheme,

• control the computed mass errors by calculating the modified volume fraction eC through (8).
In spite of its apparent complexity, the above technique is simple to implement and works in a fully auto-
matic manner. Moreover the extension from 2D to 3D flows is straightforward, in contrast to the interface
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reconstruction step used in classical VOF approaches. Finally, as already indicated, the corresponding com-
putational cost is marginal.

4. Numerical tests

4.1. Tests of the transport algorithm

We first present three tests of the whole transport procedure described in Section 3 in several nonuniform
flows. We do not reconsider the cases of pure translation and solid body rotation, as the correction procedure
leaves the corresponding results essentially unchanged compared to those shown in Fig. 2. Only Eqs. (5) are
solved here, using a prescribed velocity field. Results obtained with the correction strategy described in Section
3.2 are compared with those provided by the original scheme ð eV ¼ VÞ. We only show one- and two-dimen-
sional test cases but three-dimensional cases were run as well and yielded similar results.

We first come back to the one-dimensional straining flow used in Fig. 5. A one-dimensional step of C is
transported by a straining flow U(x) = exp[�5exp(�25x2)] that creates a region of high strain followed by
a nearly uniform region (Fig. 8(a) and (b)). Fig. 8(c) and (d) shows how C(x, t) evolves in time with the initial
transport scheme (Fig. 8(c)) and the modified one (Fig. 8(d)). In the first case the front spreads over many
computational cells and this spreading increases in time. In contrast the modified scheme allows the front
to remain sharp at all time. In Fig. 8(d) it may be noticed that the front first spreads over three grid cells
in the stretching region (see the diamond symbols), and then contracts in the nearly-uniform region. The dif-
ferences between the computed and theoretical positions of the front are less than one Dx. Then we reconsider
the example of Fig. 3 which provided the basis of the correction strategy developed in Section 3.2. Unlike in
Fig. 9(c) where the vertical fronts spread over roughly 10 cells, the solution obtained with the modified scheme
(Fig. 9(d)) is found to preserve the stiffness of all fronts, allowing the position and shape of the final rectangle
to agree well with the theoretical solution of Fig. 9(b).
Fig. 8. Advection of a step of C by a one-dimensional straining flow. (a) Velocity U(x); (b) dimensionless strain rate Sx(x) = (Dx/U)dU/
dx; (c) evolution of C(x, t) obtained using V. (d) Evolution of C(x, t) obtained using eV . (—) Initial position; (. . .. . .) theoretical solution.
The symbols indicate the numerical solution (Dx = 1/100).



Fig. 9. Stretching-compression of a rectangle in a hyperbolic flow (iso-C = 0.01, 0.5, 0.99, 100 · 100 uniform grid). (a) Initial condition;
(b) theoretical solution; (c) solution obtained using V; (d) solution obtained using eV .
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4.2. Two-dimensional bubbles

We now consider examples in which the whole set of governing equations (1)–(4) is solved and focus on the
evolution of the computed interfacial thickness and mass of each fluid. The various strategies mentioned in
Section 3.2, which differ by the manner the direction used to find the reference point x0 is selected, are con-
sidered. Here our goal is to show how this choice impacts the final result.

Computations are performed within a two-dimensional (x,z) domain 3.75D · 2D large (D being the initial
bubble diameter). We use a 150 · 80 grid size with a regular spacing in both directions (Dx/D = Dz/
D = 2.5 · 10�2). Free-slip boundary conditions are imposed on lateral boundaries while periodic conditions
are imposed on the top and bottom boundaries. The density and viscosity ratios are set to 103 and 102 respec-
tively, and the physical properties are chosen so that the Morton (or Kapitza) number is
Mo ¼ gl4

l=qlr
3 ¼ 5:3� 10�6 and the Bond (or Eötvos) number is Bo = qlgD2/r = 7.3. In the above numbers,

ql and l1 are the density and viscosity of the liquid, respectively, r is the surface tension and g denotes gravity.
The final Reynolds number is expected to be of O(102).

Fig. 10 shows the evolution of the computed bubble obtained with four different variants of the transport
algorithm. Note that Case d corresponds to our final strategy. When the standard algorithm corresponding to
Case a is used, the interface smears quite rapidly and the iso-contours of the volume fraction at the rear of the
bubble spread out in the whole computational domain. Using the modified velocity eV (Cases b–d) maintains
the interface much sharper and forces the bubble trajectory to evolve from a rectilinear path at early times to a
zigzag path. However, a significant smearing remains at the rear of the bubble in Cases b and c, i.e. in regions
where the interface is strongly curved. In contrast, there is almost no smearing in Case d, where streamlines
and grid lines are both used to find x0. This example shows in particular that the mixed strategy we finally
selected is more efficient than a strategy in which x0 is seeked along the direction of $C as in Case c.

Fig. 11 compares the evolution of the mass error in Cases a (where no mass correction is performed) and d in
which Dmmax = 10�5 is imposed in (8). The mass error clearly oscillates within the imposed bounds in the latter



Fig. 10. A two-dimensional gas bubble rising in a low-viscosity liquid (ql/qg = 103, ll/lg = 102, Mo = 5.3 · 10�6, Bo = 7.3). The
dimensionless time step Dt(g/D)1/2 between successive snapshots is 6.2. Iso-C = 0.01, 0.25, 0.5, 0.75, 0.99. (a) Standard technique ( eV ¼ V,
no control of mass errors); (b) x0 seeked using grid lines; (c) x0 seeked using the direction of $C; (d) x0 seeked using the complete
procedure involving both streamlines and grid lines. Note that mass error is controlled in cases (b)–(d).
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case. In contrast, when the mass control procedure is switched off, the mass error grows until it reaches a value
of about 9 · 10�3. While this value is still quite acceptable in the present case, it may be one order of magnitude
larger in other situations, so that the mass error really needs to be controlled to guarantee sound results.

4.3. Spatial convergence of full Navier–Stokes solutions

As we saw above, the present method inherently implies a transition region whose typical thickness is about
three computational cells. Thus we can wonder how the spatial resolution affects the dynamics of a real two-
phase flow. To illustrate this point we report on two examples in which we computed the evolution of a
deformable bubble using several grid spacings.

Our first example is concerned with small-amplitude shape oscillations of a gas bubble immersed in a liquid.
As is well known, this problem has an analytical solution, making it convenient to perform a precise conver-
gence study. We select density and viscosity ratios of 103 and 102, respectively, and an Ohnesorge number
Oh = (qlDr/2)1/2/ll of 102, so that viscosity has a negligible influence on the short-time dynamics of the oscil-
lations. The initial shape of the bubble is a prolate ellipsoid with a major axis DM = (1 + e)D and two minor



Fig. 11. (a) Evolution of the mass error in the computations of Fig. 10(a) (dashed line) and 10(d) (solid line). (b) Close up of the evolution
of the mass error in the computations of Fig. 10(d) (the dotted lines correspond to the criterion jDmmaxj = 10�5 used in Eq. (8)).
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axes Dm = D(1 + e)�1/2, with e = 0.05. It is well known that in the small-amplitude regime, the radian
frequency xn of the nth mode obeys the linear dispersion relation (Lamb, 1945)
Fig. 12
velocit
Freque
non-di
x2
n ¼ ðnþ 1Þðn� 1Þðnþ 2Þ 8r

qlD
3

ð10Þ
Computations are performed within a cylindrical (r,z) domain 2.5D · 5D large. Free-slip boundary condi-
tions are imposed on all boundaries. The computation is stopped after 8s, s being the capillary time defined
through s = (qlD

3/8r)1/2. The frequency is obtained by monitoring the instantaneous aspect ratio of the bub-
ble and performing its Fourier transform. We perform this test on grids of increasing resolution ranging from
50 · 100 to 400 · 800. The results are summarized in Fig. 12. A regular convergence towards the theoretical
frequency is observed as the grid is refined. The order of convergence is found to be about 1.5 as shown by the
solid line in Fig. 12. The present test indicates that the capillary force is satisfactorily evaluated and is correctly
coupled with the other contributions involved in the Navier–Stokes equations.

The second test concerns a deformable bubble rising in a liquid at rest. The dimensionless parameters are
ql/qg = 103, ll/lg = 102, Mo=10�2 and Bo = 10. The cylindrical computational domain is now discretized with
a uniform grid whose spacing ranges from Dx = D/10 to Dx = D/90. Figs. 13 and 14 show how the rise veloc-
ity (computed using Eq. (11) below) and final shape of the bubble change with the spatial discretization.
Fig. 13 reveals that the difference between the terminal velocity corresponding to Dx = D/20 and that obtained
with Dx = D/90 is less than 5% and the curves V = f(t) converge as the resolution increases; in particular there
. Evolution of the computational error with the grid size in some bubble computations. Rising bubble of Fig. 13: (j) Terminal
y V; (�) length of the minor axis d; (m) length of the major axis D (the reference is the result obtained with the finest grid). (d)
ncy of shape oscillations for the oscillating bubble in Section 4.3 (the reference is the theoretical prediction). The grid size is made
mensional by dividing it with D. The slope of both lines is 1.5.



Fig. 13. Time evolution of the bubble rise velocity. (. . .) Dx = D/10; (–Æ–Æ–Æ–Æ) Dx = D/20; (- - - - -) Dx = D/30; (—) Dx = D/60; (****)
Dx = D/90 (Bo = 10, Mo = 10�2).

Fig. 14. Final shape of the bubble (same physical parameters as in Fig. 13). From left to right: Dx = D/10 to Dx = D/90 (iso-C = 0.01, 0.5
and 0.99).
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is almost no difference between the two curves obtained with Dx = D/60 and Dx = D/90, respectively. Accord-
ing to Fig. 14, the shape of the bubble exhibits little sensitivity to the spatial resolution, except in the case
Dx = D/10 which is clearly under-resolved, and almost no change is discernible between the various resolu-
tions where Dx is smaller than D/30. These results suggest that in this range of parameters, the present numer-
ical approach correctly captures bubble dynamics even with modest resolutions, typically 20–30 cells per
diameter (obviously this lower bound increases with the Reynolds and Bond number). A quantitative analysis
of the sensitivity to the grid is provided in Fig. 12 where three indicators are considered, namely the terminal
bubble velocity V, the length of the minor axis d and that of the major diameter D, the latter two being defined
by locating the position of the isovalue C = 0.5. The relative error on each of these indicators is defined by
considering the result obtained on the finest grid (Dx = D/90) as the exact solution. Again, the order of con-
vergence is found to be about 1.5 as shown by the dashed line in Fig. 12.

5. Some aspects of bubble dynamics

We now leave numerical tests and turn toward several situations of physical interest involving gas bubbles
moving in an incompressible liquid. Most computations discussed in this section are axisymmetric but some of
them are fully three-dimensional. Since the density and viscosity ratios are large, gas bubbles rising in a New-
tonian liquid are usually characterized by three dimensionless parameters, namely the Reynolds number
Re = qlVD/ll, the Bond number Bo and the Morton Mo (see Section 4.2 for definitions). While the Bond
and Morton numbers may be selected a priori by the experimentalist, the Reynolds number is a result of
the bubble dynamics. The rise velocity V of the bubble is defined as its barycentric velocity in the vertical direc-
tion, viz.
V ðtÞ ¼
R
#

Cðx; tÞVðx; tÞ � ez d#R
#

Cðx; tÞd# ð11Þ
where C is the gas volume fraction, ez is the unit vector in the vertical direction and # denotes the volume of
the whole computational domain.
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5.1. Buoyant bubbles: revisiting Clift, Grace and Weber’s map

As a first physically meaningful application, we now examine the evolution of gas bubbles rising under
gravity over a wide range of Bond and Reynolds numbers, typically Bo = O(1–103) and Re = O(1–103). Clift
et al. (1978) plotted the experimentally observed shape of rising bubbles within this range in a diagram using
the Bond and Reynolds number as axes, isovalues of the Morton number appearing in the back. This map is
frequently used in the chemical engineering community. Here we revisit this map numerically and compare our
results with those of the available literature. For this purpose, we perform a series of axisymmetric computa-
tions over a wide range of Morton number (10�11 < Mo < 5 · 106) and Bond number (1 < Bo < 103), leading a
posteriori to Reynolds numbers Re ranging from 1 to 103, approximately. Therefore the Morton number
ranges from values corresponding to extremely viscous oils to water. Similarly, the Bond number ranges from
values at which the capillary pressure r/D may balance the hydrostatic head qlgD to values at which the for-
mer is only a very small fraction of the latter. Note that when the Reynolds number exceeds some hundreds,
real bubbles may not remain axisymmetric, owing to wake instability (Magnaudet and Eames, 2000), so that
the axisymmetric results presented below must be regarded with some caution in this range.

The computations are performed within a cylindrical (r,z) domain 5.5D · 12.6D large. We use a 140 · 700
grid size with a regular spacing in the z-direction (Dz/D = 1.8 · 10�2). In the r-direction, the spacing is regular
over a central zone 0 6 r 6 1.8D corresponding to the region crossed by the bubble and that of maximum
liquid entrainment (Dr/D = 1.8 · 10�2). The outer region 1.8D < r 6 5.5D is discretized with 40 cells whose
size increases with r following an arithmetic distribution. In the vertical direction, the grid is uniform, i.e.
the grid spacing Dz/D is about 1/55. Free-slip boundary conditions are imposed on the top, bottom and lateral
boundaries, so that the fluid entrained upward by the bubble slowly goes down near the lateral boundary;
obviously computations are stopped before the bubble comes close to the upper boundary, to avoid contam-
ination of the results by confinement effects. The density ratio ql/qg and the viscosity ratio ll/lg are set to 103

and 102 respectively. All computations are started by releasing a spherical bubble from rest. The range of
parameters covered in this investigation is summarized in Table 1.

Results exhibiting very contrasted shapes of bubbles are displayed in Fig. 15. Following the description of
Bhaga and Weber (1981), we observe spherical bubbles (Case a), oblate ellipsoidal cap bubbles (Cases c and
d), ellipsoidal bubbles (Case f), dimpled ellipsoidal cap bubbles (Case g), skirted bubbles (Case h), oblate
ellipsoidal bubbles (Case j), toroidal bubbles (Cases k, l, o and p) and wobbling bubbles (Case n). The three
iso-contours C = 0.01, 0.5 and 0.99 are almost superimposed in most cases. Some local smearing of the front
may however be observed in cases where a pronounced dimple or skirt is present. Present results may be com-
pared with those of Fig. 17 in which we reported the experimental observations of Bhaga and Weber (1981)
and the numerical results of Unverdi and Tryggvason (1992) and Ryskin and Leal (1984) (note that in the
latter reference the authors classified their results according to the value of the Reynolds number Re and
the Weber number We = qlV

2D/r). The bubble shapes of Fig. 15 corresponding to Cases c, f, i, j are in good
agreement with those obtained in Ryskin and Leal (1984) through a boundary-fitted technique (Cases e, /, c
and g in Fig. 17). A good correspondence is also observed with the experiments of Bhaga and Weber (1981),
even though the corresponding Bond and Reynolds numbers were slightly different from those of Table 1
(Cases c, g and h in Fig. 15 and a, b and v in Fig. 17). Finally the comparison with the computations of
Unverdi and Tryggvason (1992) reveals a good agreement at low-to-moderate Bo (Cases e, f and i in
Fig. 15 and i, u and k in Fig. 17) but shows slight differences at the rear part of the bubble for
Table 1
Dimensionless parameters of the computations corresponding to Fig. 15 (the approximate value of the Reynolds number is calculated a
posteriori)

Morton number Bo = 1 Bo = 10 Bo = 102 Bo = 103

Re � 1 (a) 5 · 10�3 (b) 5 (c) 5 · 103 (d) 5 · 106

Re � 10 (e) 10�5 (f) 10�2 (g) 10 (h) 104

Re � 102 (i) 5 · 10�8 (j) 5 · 10�6 (k) 10�3 (l) 1
Re � 103 (m) 10�11 (n) 10�9 (o) 10�7 (p) 10�4



Fig. 15. Buoyant bubbles rising in a Newtonian liquid (ql/qg = 103, ll/lg = 102, Dx/D = 1/60, iso-C = 0.01, 0.5 and 0.99).

T. Bonometti, J. Magnaudet / International Journal of Multiphase Flow 33 (2007) 109–133 125
Bo = O(102) and Re = O(10). In this range of parameters, our computations result in a bubble exhibiting a
short dimple, whereas a skirted bubble was observed in Unverdi and Tryggvason (1992) (Case g in Fig. 15
and j in Fig. 17). It may be that, owing to the limitation of the present method in the capture of thin filaments,
the thin skirt predicted by these authors cannot be reproduced; on the other hand, the shape we observe is very
similar to that revealed by the photograph of Bhaga and Weber (1981) in the same range of parameters (Case
b in Fig. 17). Note that when Re is large while Bo is of O(10) (Cases j and n in Fig. 15), shape oscillations occur
during the rise of the bubble. Finally, when inertia effects are large while capillary effects are very small (Cases
l, o and p), our computations indicate that the bubble becomes toroidal. Such evolution has already been
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reported by Sussman and Smereka (1997) and Chen et al. (1999) who observed it for Bond and Reynolds num-
bers typically larger than 102. Note that with this resolution, the computed bubble in the Case k in Fig. 15 is
toroidal whereas the one reported by Bhaga and Weber (1981) (Case d in Fig. 17) has a spherical-capped
shape. A detail analysis of the evolution of the bubble topology in this range of parameters was performed
by Bonometti and Magnaudet (2006) who showed that the spatial resolution plays a crucial role in the evo-
lution of this topology and that a minimum of one hundred grid points per bubble diameter is required to
obtain grid-independent results. In view of this, the present grid is not fine enough to provide accurate results
in this very sensitive range. The reader is referred to the above paper for more details on the formation of
toroidal bubbles.

The evolution of the Reynolds number Re of bubbles depicted in Fig. 15 is displayed in Fig. 16. These
curves can be divided in two groups, with Group 2 including Cases k, l, o and p of Fig. 15. Bubbles from
Group 1 accelerate during a time period of Oð

ffiffiffiffiffiffiffiffiffi
g=D

p
Þ and then reach a steady state Reynolds number. Case

n in Figs. 15 and 16 exhibits periodic fluctuations about the mean value Re = 800. These fluctuations are
related to shape oscillations (Norman and Miksis, 2005) already observed experimentally (Clift et al., 1978;
Stewart, 1995). Again, care has to be taken in the interpretation of this result as the path of real bubbles
may not remain straight in this high-Re regime. The second group is made of toroidal bubbles. The corre-
sponding evolution of the Reynolds number is characterized by sharp peaks at early times ðt

ffiffiffiffiffiffiffiffiffi
g=D

p
< 3Þ,

followed by a strong decrease. For instance, Re is reduced by more than 50% between t
ffiffiffiffiffiffiffiffiffi
g=D

p
¼ 3 and

t
ffiffiffiffiffiffiffiffiffi
g=D

p
¼ 15 in Case k of Fig. 16. This decrease is accompanied by velocity fluctuations; the higher Re, the

larger the amplitude of these fluctuations.
Fig. 16. Time evolution of the Reynolds number of the bubbles of Fig. 15.



Fig. 17. Buoyant bubbles rising in a Newtonian liquid. Results from (') Bhaga and Weber (1981) with ql/qg � 1050 and ll/lg P 4 · 103(a:
Bo = 116, Mo = 848, Re = 2.47; (b): Bo = 116, Mo = 5.51, Re = 13.3; (v): Bo = 339, Mo = 43.1, Re = 18.3; (d): Bo = 115,
Mo = 4.6 · 10�3, Re = 94); (d) Ryskin and Leal (1984) with ql/qg =1 and ll/lg =1 (e: Re = 1, We = 4; (/): Re = 10, We = 4; (c):
Re = 102, We = 3; (g): Re = 102, We = 8); (§) Unverdi and Tryggvason (1992) with ql/qg = 40 (i: ll/lg = 277, Bo = 1, Mo = 10�5; (u):
ll/lg = 277, Bo = 10, Mo = 10�2; (j): ll/lg = 269, Bo = 104, Mo = 10; (k): ll/lg = 88, Bo = 1, Mo = 10�7).
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5.2. Motion of two bubbles rising in line

We now consider the two-body interaction problem of nearly-spherical bubbles moving along their line of
centres. This problem was addressed numerically by Yuan and Prosperetti (1994) for strictly spherical bubbles
in the range 50 6 Re 6 200, using a boundary-fitted method. They found that, based on the competition
between the repelling irrotational (dipole) effect and the attractive suction of the trailing bubble in the wake
of the leading one, the separation H between the bubble centres reaches an equilibrium value which depends
on the Reynolds number as H/D = 2.20 log10 Re � 2.19, D being the bubble diameter and Re being based on
the terminal bubble velocity. Their findings were mostly confirmed by Harper (1997) on the basis of an asymp-
totic study carried out in the limit Re� 1, H/D!1. A detailed experimental investigation of the same
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problem, combined with a modelling of the interaction process was reported by Katz and Meneveau (1996).
They found that coalescence always occurs for 0.2 6 Re 6 35, which suggests that the finite separation pre-
dicted by Yuan and Prosperetti (1994) for Re > 50 may not exist at low-to-moderate Reynolds number. Here
we make use of our computational technique to revisit this problem with slightly deformable bubbles by con-
sidering the two contrasted situations corresponding to Re � 20 and Re � 180.

The computations are performed on a grid similar to that used in Section 5.1. However, as the interaction
process requires a fairly long time to reach equilibrium, the cylindrical (r,z) domain is extended in the vertical
direction and is chosen to be 8D · 24D large. The grid size is 140 · 1400 and the region of regular spacing in
the r-direction is 0 6 r 6 1.5D. Free-slip (resp. periodic) boundary conditions are imposed on the lateral (resp.
horizontal) boundaries. The density and viscosity ratios are set to 103 and 102 respectively, whereas we select
Bo = 0.4. In the first case (denoted as Case A) the Morton number is Mo = 5 · 10�7 while in the second case
(Case B) we select Mo = 1.75 · 10�9. The two bubbles have the same initial diameter D and are initially sep-
arated by a centre-to-centre distance H0 = 2.5D. The computation is started by releasing the two spherical
bubbles from rest. Note that the mass correction (8) is applied to each bubble individually with Dmmax = 10�5

to insure that the system dynamics are not altered by small mass differences.
Fig. 18(a) shows the evolution of the two bubbles in Case A. As they rise, bubbles get closer and closer to

each other, owing to the shielding effect produced by the wake of the leading bubble which acts to reduce the
drag of the trailing one. As this effect keeps on acting, the two bubbles eventually coalesce. The resulting
bubble rapidly takes a slightly oblate shape. Fig. 19(a) shows the evolution of the two bubble Reynolds
numbers. The relative velocity first increases (3 < t(g/D)1/2 < 9) so that the velocity of the trailing bubble is
about 14% higher than that of the leading one at t(g/D)1/2 = 9. This relative velocity then slightly decreases
as the distance between the two bubbles becomes less than one diameter (9 < t(g/D)1/2 < 14). Coalescence
occurs at t(g/D)1/2 = 14 and is accompanied by strong fluctuations of the velocity due to shape oscillations
(14 < t(g/D)1/2 < 17). The resulting bubble eventually reaches a steady Reynolds number about 23. These
results are in qualitative agreement with those of Katz and Meneveau (1996) who always observed coalescence
in this range of Reynolds number. Note also that the empirical expression found by Yuan and Prosperetti
(1994) for the final separation H/D predicts values less than unity for Re < 28, which suggests that the two
bubbles should eventually overlap even though they were perfectly spherical.

The evolution of the two bubbles in Case B displayed in Fig. 18(b) is quite different. The leading bubble first
rises slightly faster than the trailing one (see Fig. 19(b), t(g/D)1/2 < 3) because the repelling irrotational effect
acts first. As the wake of the leading bubble develops, the trailing bubble accelerates and goes faster than the
leading one (3 < t(g/D)1/2 < 9). An equilibrium between the two competing effects is eventually found and both
Fig. 18. Evolution of two nearly spherical bubbles rising in line (ql/qg = 103; ll/lg = 102; h/D = 1.5, Bo = 0.4). (a) Mo = 5 · 10�7;
(b) Mo = 1.75 · 10�9 (iso-C = 0.01, 0.5 and 0.99). The dimensionless time step Dt(g/D)1/2 between successive snapshots is 4.4.



Fig. 19. Time history of the individual Reynolds numbers of the two bubbles of Fig. 18. (—) leading bubble; (- - - -) trailing bubble.
(a) Mo = 5 · 10�7; (b) Mo = 1.75 · 10�9.
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bubbles reach the same final Reynolds number Re � 180. The equilibrium shape is displayed in Fig. 18(b).
Both bubbles are slightly oblate, the aspect ratio of the leading (resp. trailing) bubble being vl = 1.32 (resp.
vt = 1.21). It is known that a slightly deforming isolated bubble rising in the high-Reynolds number regime
has an aspect ratio v � 1 + 9/64We, with We = qlV

2D/r (Moore, 1965). As We = Re2(Mo/Bo)1/2, we have
We = 2.1 from which the above prediction yields v = 1.30. The computed deformation of the leading bubble
is close to this prediction, which was to be expected since the trailing bubble only slightly disturbs the flow
around the leading bubble. In contrast the deformation of the trailing bubble is less than predicted for an
isolated bubble because the pressure difference between its front stagnation point and its equator is smaller
than that experienced by an isolated bubble, owing to the pressure reduction in the wake of the leading bubble.
Fig. 18(b) indicates that the equilibrium separation is H/D = 2.23, whereas Yuan and Prosperetti (1994) found
H/D = 2.77 for spherical bubbles with the same final Reynolds number. That the equilibrium separation
found here with Bo = 0.4 is less than that corresponding to Bo = 0 indicates that the strength of the shielding
effect increases more rapidly with the aspect ratio v than the irrotational repelling effect.

5.3. Interaction of two bubbles rising side by side

We finally consider the problem of the lateral interaction between two nearly spherical bubbles rising side
by side at moderate Reynolds number in a liquid at rest. This problem is of interest because it is now estab-
lished, both experimentally (Takemura and Magnaudet, 2003) and numerically (Legendre et al., 2003), that
the lateral force changes sign for a certain critical Reynolds number Re0 of some tens. This force is repulsive
(resp. attractive) when the bubble Reynolds number is smaller (resp. larger) than Re0, a result of the com-
petition between vortical and irrotational interaction mechanisms. For instance, Legendre et al. (2003)
predicted that Re0 is about 30 for two spherical bubbles whose centers are separated by a distance
h = 1.5D (D being the bubble diameter), a value confirmed by the experimental results of Takemura and
Magnaudet (2003). As the lateral force is always a small percentage of the drag in these situations, it is chal-
lenging to see whether the present computational approach is capable of predicting the observed reversal of
the lateral force.

For this purpose we consider two situations in which the density and viscosity ratios are set to 103 and 102

respectively, the Bond number is set to Bo = 0.4 and the initial separation h between the two bubbles centers
is h/D = 1.5. In the first case (denoted as Case A) the Morton number is 10�6, so that Re is about 10, while in
the second case (Case B) we select Mo = 5 · 10�8 so that Re is about 50. The grid extends over
9.5D · 8D · 4.5D in the (x,y,z) directions (see Fig. 20) and is made of 90 · 60 · 90 cells. The cells are uni-
formly distributed, with Dz/D = 1/20, along the vertical (z) direction. In contrast, in the horizontal direc-
tions, the grid is only uniform within the central region crossed by the two bubbles (with Dx/D = Dy/



Fig. 20. The computational grid used in computations of Fig. 21. (a) Top view; (b) general view.
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D = 1/20), and is then nonuniform and coarser on the lateral part of the domain. Periodic conditions are
imposed at the top and bottom boundaries while a free-slip condition is used on the vertical boundaries.
The gap separating the two bubbles is initially described with ten cells and the two bubbles are released from
rest. Note that, as we are using periodic conditions along the z-axis, we actually compute two chains of
bubbles rising side by side rather than a single pair of bubbles. However in the flow regime considered here,
the results of Yuan and Prosperetti (1994) indicate that this in-line interaction does not change the drag force
by more than 5% for a vertical separation of 4.5D. Thus, for the present purpose, the bubbles may be con-
sidered almost isolated in the vertical direction.

Fig. 21(a) shows how the two bubbles evolve in Case A. Clearly they slightly separate from each other as
they rise, as predicted by Takemura and Magnaudet (2003) and Legendre et al. (2003). The deflection of the
trajectory with respect to the vertical is about 4�. This deflection is small but this had to be expected on the
basis of the relative value of the drag and transverse force for two strictly spherical bubbles. More precisely
Fig. 21. Evolution of two nearly spherical bubbles rising side by side (ql/qg = 103; ll/lg = 102; h/D = 1.5, Bo = 0.4). (a) Mo = 10�6;
successive dimensionless times are s = t(g/D)1/2 = 0, 2.46, 4.42, 6.39, 8.36, 10.82; (b) Mo = 5 · 10�8; successive dimensionless times are
s = t(g/D)1/2 = 0, 1.47, 2.46, 3.41, 4.39, 5.38 and 6.61. (iso-C = 0.5).
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Legendre et al. (2003) indicate that the drag coefficient is CD = 2.43 for Re = 10, whereas the ‘‘lift’’ coeffi-
cient is only CL = 0.15 (both being defined by normalizing the corresponding component of the force with
qlpD2V2/8). This yields a deflection angle of 3.5� for Bo = 0, which compares well with the value of 4� obtained
for Bo = 0.4.

The evolution is dramatically different in Case B (Fig. 21(b)). First, the separation between the two bubbles
decreases, as expected from Takemura and Magnaudet (2003) and Legendre et al. (2003). Then the film
separating the two bubbles breaks and the two bubbles coalesce, resulting in an oblate spheroidal bubble
whose final Reynolds number is about 60. For strictly spherical bubbles, Legendre et al. (2003) predict that
the final separation between the two bubbles should be 1.125D. With the present grid, such a narrow gap
is described by only 2 to 3 grid points, so that numerical coalescence can hardly be avoided. This phenomenon
is reinforced by the smoothing procedure of the volume faction used in the computation of the capillary force
(see Section 2) which makes this force act artificially through a layer with a finite thickness. Moreover, coa-
lescence can physically be favored by the slight oblateness of the bubbles. A detailed study of the influence of
the grid resolution and of the technique used to evaluate the capillary force during the late stages of the motion
within the intersticial film is beyond the scope of the present work but remains an important issue for the
future. At the present stage, we may at least conclude that, up to the accuracy allowed by the grid, Fig. 21
indicates that our code captures correctly the subtle hydrodynamic interactions between two bubbles rising
side by side. In particular, it is able to predict correctly the sign reversal of the transverse force acting on
the two bubbles.
6. Conclusion

We described a front-capturing method whose goal is to solve three-dimensional incompressible two-phase
flows with large density and viscosity contrasts without involving any explicit interface reconstruction step,
while maintaining sharp interfaces. The transported scalar quantity characterizing the two-phase nature of
the flow is the volume fraction of one of the fluids. We developed simple correction strategies to conserve
the mass of each fluid constant (since the volume fraction is transported in a non-conservative way), and
to maintain the stiffness of the transition region surrounding the interface. For this purpose the volume
fraction and velocity fields are suitably modified within the transition zone. In particular the velocity is made
almost constant across this zone, so as to remove the spreading of the fronts in regions of stretching. Numer-
ical tests demonstrated the ability of this correction strategy to properly transport the volume fraction in
various types of flows; the accuracy of the overall method was also established on several examples dealing
with bubble dynamics. A detailed study of several aspects of these dynamics was then carried out. In partic-
ular, the shape and velocity evolution of isolated bubbles were computed over a wide range of parameters and
showed good agreement with available experimental results. The more subtle problem of head-on and side-by-
side interactions of two identical bubbles was then considered. In both cases, the corresponding results
revealed that the numerical approach correctly reproduces the consequences of the competition between
the vortical and the irrotational interaction mechanisms.

The next step of our work is to develop specific subgrid-scale models to take into account small-scale struc-
tures (such as small droplets and small bubbles) and subgrid-scale phenomena (such as the drainage of thin
intersticial films) in the large-scale dynamics of complex bubbly flows.
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Bonometti, T., Magnaudet, J., 2006. Transition from spherical cap to toroidal bubbles. Phys. Fluids 18, 052102.
Boris, J.P., Book, D.L., 1973. Flux-corrected transport: I. SHASTA, A fluid transport algorithm that works. J. Comput. Phys. 18, 248–

283.
Brackbill, J.U., Kothe, D.B., Zemach, C., 1992. A continuum method for modeling surface tension. J. Comput. Phys. 100, 335–354.
Bunner, B., Tryggvason, G., 2002. Dynamics of homogeneous bubbly flows. Part 1. Rise velocity and microstructure of the bubbles.

J. Fluid Mech. 466, 17–52.
Calmet, I., Magnaudet, J., 1997. Large-eddy simulation of high-Schmidt-number mass transfer in a turbulent channel flow. Phys. Fluids 9,

438–455.
Chang, Y.C., Hou, T.Y., Merriman, B., Osher, S., 1996. A level set formulation of Eulerian interface capturing methods for

incompressible fluid flows. J. Comput. Phys. 124, 449–464.
Chen, L., Garimella, S.V., Reizes, J.A., Leonardi, E., 1999. The development of a bubble rising in a viscous liquid. J. Fluid Mech. 387, 61–

96.
Clift, R., Grace, J.R., Weber, M.E., 1978. Bubbles, Drops and Particles. Academic Press, New York.
Dendy, E.D., Padial-Collins, N.T., VanderHeyden, W.B., 2002. A general-purpose finite-volume advection scheme for continuous and

discontinuous fields on unstructured grids. J. Comput. Phys. 180, 559–583.
De Sousa, F.S., Mangiavacchi, N., Nonato, L.G., Castelo, A., Tomé, M.F., Ferreira, V.G., Cuminato, J.A., McKee, S., 2004. A front-
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